Some Strange Science Will Launch Into Space This Week for NASA

This Thursday, crystallizing proteins from the Michael J. Fox Foundation, a dizzying virtual- reality system, ultratiny membranes and the “Refabricator” — a device that turns waste into 3D-printing filament, will all be shooting into space.

This weird science and so much more will launch Thursday (Nov. 15) at 4:49 a.m. EST (0949 GMT) on Northrop Grumman’s (formerly Orbital ATK) 10th commercial resupply mission to the International Space Station. The company’s Cygnus spacecraft will lift off on its Antares rocket from the Mid-Atlantic Regional Spaceport at the Wallops Flight Facility in Virginia, carrying about 882 pounds (400 kilograms) of research and hardware for these experiments, NASA officials said in a statement. In total, the rocket will launch about 7,500 pounds (3,402 kg) of scientific equipment and crew supplies like food and clothing to the International Space Station.

These experiments will be among the hundreds of scientific investigations currently happening aboard the space station. The launch will be visible along parts of the U.S. East Ccoast, and you can watch it live online here at Space.com, courtesy of NASA TV. [Launch Photo: Orbital ATK’s Antares Rocket & Cygnus OA-9 Soar to Space Station]

Northrop Grumman's Antares rocket, preparing for Northrop Grumman's 10th commercial resupply mission to the International Space Station, is seen on the left in the Horizontal Integration Facility at NASA's Wallops Flight Facility in Virginia.

Northrop Grumman’s Antares rocket, preparing for Northrop Grumman’s 10th commercial resupply mission to the International Space Station, is seen on the left in the Horizontal Integration Facility at NASA’s Wallops Flight Facility in Virginia.

Credit: Patrick Black/NASA’s Wallops Flight Facility

Northrop Grumman’s Cygnus vehicle has been named in honor of NASA astronaut and U.S. Navy officer John Young. Young spent 835 hours in space over six missions as a NASA astronaut.

Aboard the Cygnus vehicle will be a device called the Refabricator as part of the In-Space Manufacturing Refabricator project. This is the first integrated 3D printer and recycler that will turn waste plastic into filament for 3D-printing aboard the space station. The filament will be used for repairs aboard the space station and also as a means of recycling waste. The device could also be used to fabricate things on board the space station.

Refabricator flight hardware as seen from the front, similar to how it will look when installed in the EXPRESS Rack on the International Space Station.

Refabricator flight hardware as seen from the front, similar to how it will look when installed in the EXPRESS Rack on the International Space Station.

Credit: Allison Porter, Tethers Unlimited Inc.

This technology could be very useful for long-term deep-space missions where astronauts will have to deal with waste, repair and resource issues on a regular basis. As the investigation’s research overview states, “Without a recycling capability, a large supply of feedstock would need to be stowed on board for long-duration exploration missions.” This investigation is sponsored by NASA’s Technology Demonstration Office.

The Effect of Long Duration Hypogravity on the Perception of Self-Motion (VECTION) study, another investigation launching to the space station, will explore how a microgravity environment might affect an astronaut’s ability to visually interpret motion, orientation and distance.

Here on Earth, our senses work together to let us know how far away we are from things, how fast they are moving, and how they are oriented. In space, gravity no longer plays a part in our vestibular system, a system that contributes to our sense of balance and orientation. The VECTION study aims to better understand how microgravity affects these senses using virtual reality.

In this study, astronauts will wear a virtual-reality (VR) system that will provide computer-generated visual clues to try to create artificial gravity using visual acceleration, Laurence Harris, a professor at York University in Toronto and principal investigator in this research, said at a news conference on Thursday, Nov. 8. After the VR simulation, the astronauts will report how far they perceive that they moved, how far away things were from them, etc.

“Many astronauts do feel disoriented or suffer from space sickness when they first arrive at the space station,” Harris said. So, to understand how a microgravity environment might affect astronauts at multiple points in their trip, they will participate in the VR simulation as soon as they arrive in space, once they’ve gotten used to the environment and once they’ve returned to Earth.

[“source=TimeOFIndia”]

NASA Seeks Partnership With US Industry to Build First Element of ‘Gateway’ Orbital Outpost

NASA Seeks Partnership With US Industry to Build First Element of 'Gateway' Orbital Outpost

In line with US President Donald Trump’s “Space Policy Directive 1”, NASA has sought partnership with the US industry to develop the first element of the Gateway, which will become the orbital outpost for robotic and human exploration operations in deep space.

NASA has released a draft solicitation seeking commercial and international partners via the Board Agency Announcement (BAA) this week to US industry to acquire an element for the Gateway.

The Gateway will support exploration on and near the Moon, and beyond, including Mars, NASA said in a statement.

The draft seeks a high-power, 50-kW solar electric propulsion (SEP) spacecraft to maintain the Gateway’s position as well as move it between lunar orbits as needed.

It will also provide power to the rest of the Gateway, controls and communications, the statement said.

“We believe partnering with US industry for the power and propulsion element will stimulate advancements in commercial use of solar electric propulsion and also serve NASA exploration objectives,” said Michele Gates, Director (Power and Propulsion Element) at NASA.

Through the upcoming solicitation, industry will be asked to participate in a public/private partnership, which includes a flight demonstration of the power and propulsion spacecraft.

Following this test lasting up to one-year in space after launch, NASA will have the option to acquire the spacecraft for use as the first element of the Gateway in lunar orbit.

The power and propulsion element is also expected to enable high-rate, reliable communications between Earth and deep space, which will be important during spacewalks in deep space, human exploration of the lunar surface and more.

To meet current Gateway development planning, NASA is targeting launch of the power and propulsion element on a partner-provided commercial rocket in 2022, the statement said.

In addition to the draft BAA, NASA will host an Industry Day on July 10 prior to issuing the final BAA.

 

 

[“Source-gadgets.ndtv”]

With the launch of TESS, NASA will boost its search for exoplanets

illustration of TESS telescpope

NASA is stepping up its search for planets outside our solar system. Its next exoplanet hunting telescope, the Transiting Exoplanet Survey Satellite (TESS), is due to launch from Cape Canaveral on the evening of April 16.

Following the Kepler space telescope’s discovery of more than 5,000 possible exoplanets since 2009, TESS will continue the galactic census — flagging more planetary candidates for further study.

Astronomers expect TESS to find about 20,000 planets in its first two years in operation, focusing on nearby, bright stars that will be easy for other telescopes to investigate later. About 500 of those expected exoplanets would be less than twice the size of Earth — and therefore may be good places to look for life.

NASA’s next exoplanet hunting telescope, TESS

SMALL BUT MIGHTY NASA’s next exoplanet hunting telescope, TESS, is only 1.5 meters tall (shown here with engineers). Its size is partly due to the fact that it was designed to launch on NASA’s small Taurus rocket, but will instead launch on a larger SpaceX Falcon 9 on April 16.

ORBITAL ATK

The TESS mission is “a whole new opening for exoplanet studies,” MIT astronomer Sara Seager, TESS’ deputy science director, said during a news conference describing the upcoming launch.

TESS will be the first NASA science mission launched on the SpaceX Falcon 9 rocket. Once in orbit, the spacecraft will trace an unusual, elliptical path between Earth and the moon that will enable it to observe at least 85 percent of the sky — 350 times as much sky as Kepler saw.

Most of the planets found by Kepler orbit stars 1,000 light-years away or farther. TESS will focus on 200,000 stars that are a few hundred light-years away at most, and shine between 30 to 100 times brighter on average than Kepler’s.

The brighter the star, the easier it is to determine its planet’s characteristics, such as its mass and whether it has an atmosphere, Seager says. “Photons are our currency — the more, the better,” she says.

That follow-up will help TESS avoid some of Kepler’s pitfalls. Because Kepler’s stars were so far and so dim, some of its planet candidates were confirmed as actual planets only by statistics rather than by other telescopes. And not all those confirmations may stick. A recent paper posted at arXiv.org showed that Kepler 452b, an Earth-sized planet that orbits a sunlike star at the same distance Earth orbits the sun, may be a mirage (SN: 8/22/15, p. 16). Many of TESS’ planets won’t face the same uncertainty.

the TESS sattelite

COASTING IN SPACE The TESS satellite’s unusual 13.7-day orbit uses the moon’s gravity to stabilize it, so it needs little fuel. During the part of the orbit colored blue, TESS will observe the sky. During the part marked in orange, it will transmit data back to Earth. The gray ring marks the moon’s orbit.

NASA

But the way TESS will search for exoplanets is the same as Kepler: The satellite will watch stars for signs of dimming, which can indicate that a planet is transiting, or crossing in front of, the star. Measuring how much starlight is blocked can tell astronomers the size of the planet.

Once TESS finds a planet, astronomers will need more information to understand its qualities, such as whether it’s rocky or gassy (SN Online: 6/19/17). For that, other telescopes will follow up. Ground-based telescopes will measure the gravitational tug of a planet on its host star to learn the planet’s density, which is a clue to its composition. Astronomers plan to measure masses for at least 50 TESS planets that are smaller than Neptune in the hopes that many of them will have rocky, and therefore potentially habitable, surfaces.

Undiscovered country

Before TESS, most known planets were more than 1,000 light-years away, with a few closer than 30 light-years (a parsec is 3.26 light-years). TESS (orange circles) will fill in the gap. The size of the circles represents how easy the planets are to find.

graph showing where TESS will be able to detect planets
ZACH BERTA-THOMPSON

NASA’s James Webb Space Telescope, now scheduled to launch in 2020, will then check some of those planets for signs of life (SN: 4/30/16, p. 32).

“This is one of the major questions that TESS is intended to answer: Where will we be pointing Webb?” said the mission’s principal investigator, MIT astronomer George Ricker, at the press conference. Webb will peer at the starlight filtering through planetary atmospheres to try to detect molecules that could be produced by something living on the surface.

It will take a few months for TESS to swing into its regular orbit before it begins collecting data. At that point, it will be able to use the moon’s gravity to stabilize itself for decades in orbit without using extra fuel. The mission is set to last two years, but could continue taking data almost indefinitely.

“TESS is not going to be limited by any expendable or other aspects,” Ricker said. “It will be basically limited by how long NASA has the patience to fund the mission.”

[“Source-sciencenews”]

NASA to launch sounding rocket which releases artificial clouds on June 4

NASA, sounding rocket, artificial clouds, space studies, visually track particle motion, vapour tracers

These clouds or vapour tracers allow scientists on the ground to visually track particle motions in space. (Image for representation, Source : NASA)

NASA on Saturday scrubbed the launch of a sounding rocket which will release blue-green and red artificial clouds. “Launch scrubbed because of boats in the impact area for the second stage motor. We will try again Sunday, June 4,” NASA’s Wallops Flight Facility announced on its Facebook page. The launch window is 4:26 to 4:41 a.m.EDT (1:56-2.11 p.m India time).

The launch of the Terrier-Improved Malemute sounding rocket testing a new deployment system to support space studies was originally scheduled for May 31, but it was subsequently delayed. “Clear skies are required at one of the ground stations to view blue-green and red artificial clouds that will be produced as part of the test. These artificial clouds may be seen from New York to North Carolina,” NASA earlier said.

The rocket will eject 10 canisters about the size of a soft drink can between 10 to 20 kms from the rocket’s main payload, and these containers will release the vapour between 4 and 5.5 minutes after launch.These clouds or vapour tracers allow scientists on the ground to visually track particle motions in space.

Also Read: Mongolia to send its first satellite to space on June 4

The development of the multi-canister or ampule ejection system will allow scientists to gather information over a much larger area than previously allowed when deploying the vapour just from the main payload.Ground cameras will be stationed at Wallops and in Duck, North Carolina, to view the vapour tracers. “The vapour tracers are formed through the interaction of barium, strontium and cupric-oxide. The tracers will be released at altitudes 96 to 124 miles high and pose absolutely no hazard to residents along the mid-Atlantic coast,” NASA said

Sounding rockets take their name from the nautical term “to sound,” which means to take measurements. The flight of a sounding rocket is short-lived, and has a parabolic trajectory — the shape of a frown. The total flight time for the current mission is expected to be about eight minutes. The payload will land in the Atlantic Ocean about 90 miles from Wallops Island and will not be recovered.

[“Source-ndtv”]